Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Anal Bioanal Chem ; 413(22): 5619-5632, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2174032

ABSTRACT

In the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance. Graphical abstract.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immune Sera , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Luminescent Measurements , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors
2.
PLoS One ; 17(2): e0262591, 2022.
Article in English | MEDLINE | ID: covidwho-1968842

ABSTRACT

SARS-CoV-2 Nucleocapsid (N) is the most abundant viral protein expressed in host samples and is an important antigen for diagnosis. N is a 45 kDa protein that does not present disulfide bonds. Intending to avoid non-specific binding of SARS-CoV-2 N to antibodies from patients who previously had different coronaviruses, a 35 kDa fragment of N was expressed without a conserved motif in E. coli as inclusion bodies (N122-419-IB). Culture media and IB washing conditions were chosen to obtain N122-419-IB with high yield (370 mg/L bacterial culture) and protein purity (90%). High pressure solubilizes protein aggregates by weakening hydrophobic and ionic interactions and alkaline pH promotes solubilization by electrostatic repulsion. The association of pH 9.0 and 2.4 kbar promoted efficient solubilization of N122-419-IB without loss of native-like tertiary structure that N presents in IB. N122-419 was refolded with a yield of 85% (326 mg/L culture) and 95% purity. The refolding process takes only 2 hours and the protein is ready for use after pH adjustment, avoiding the necessity of dialysis or purification. Antibody binding of COVID-19-positive patients sera to N122-419 was confirmed by Western blotting. ELISA using N122-419 is effective in distinguishing between sera presenting antibodies against SARS-CoV-2 from those who do not. To the best of our knowledge, the proposed condition for IB solubilization is one of the mildest described. It is possible that the refolding process can be extended to a wide range of proteins with high yields and purity, even those that are sensible to very alkaline pH.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/chemistry , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Immunoglobulin G/blood , Inclusion Bodies/chemistry , Protein Refolding , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrogen-Ion Concentration , Hydrostatic Pressure , Immunoglobulin G/immunology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Solubility
3.
J Immunol ; 208(8): 1989-1997, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1776403

ABSTRACT

Regulatory T cells (Tregs) are critical for regulating immunopathogenic responses in a variety of infections, including infection of mice with JHM strain of mouse hepatitis virus (JHMV), a neurotropic coronavirus that causes immune-mediated demyelinating disease. Although virus-specific Tregs are known to mitigate disease in this infection by suppressing pathogenic effector T cell responses of the same specificity, it is unclear whether these virus-specific Tregs form memory populations and persist similar to their conventional T cell counterparts of the same epitope specificity. Using congenically labeled JHMV-specific Tregs, we found that virus-specific Tregs persist long-term after murine infection, through at least 180 d postinfection and stably maintain Foxp3 expression. We additionally demonstrate that these cells are better able to proliferate and inhibit virus-specific T cell responses postinfection than naive Tregs of the same specificity, further suggesting that these cells differentiate into memory Tregs upon encountering cognate Ag. Taken together, these data suggest that virus-specific Tregs are able to persist long-term in the absence of viral Ag as memory Tregs.


Subject(s)
Coronavirus Infections , Murine hepatitis virus , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Mice , T-Lymphocytes, Regulatory
4.
MAbs ; 14(1): 2021601, 2022.
Article in English | MEDLINE | ID: covidwho-1625321

ABSTRACT

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Molecular Docking Simulation , Monte Carlo Method , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Article in English | MEDLINE | ID: covidwho-1619980

ABSTRACT

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Subject(s)
Antigens, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Epitopes, B-Lymphocyte/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Reactions/genetics , Antigen-Antibody Reactions/immunology , Computational Biology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/immunology , Databases, Chemical , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Mice , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Single-Domain Antibodies/immunology
6.
PLoS Comput Biol ; 17(12): e1009664, 2021 12.
Article in English | MEDLINE | ID: covidwho-1571973

ABSTRACT

The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.


Subject(s)
Evolution, Molecular , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/chemistry , Antigens, Viral/genetics , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immune Evasion/genetics , Influenza, Human/immunology , Influenza, Human/virology , Models, Immunological , Molecular Dynamics Simulation , Mutation , Pandemics , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
7.
J Cell Biochem ; 123(2): 417-430, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525444

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor-binding domain (RBD) of the spike protein. RBD interacts with angiotensin-converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS-CoV-2. Our group utilizes computational biology approaches such as immunoinformatics, protein-protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.


Subject(s)
COVID-19/virology , Mutation, Missense , Pandemics , Point Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , Binding Sites , Computational Biology/methods , Energy Transfer , Epitopes/chemistry , Epitopes/immunology , Evolution, Molecular , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Stability , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
8.
Science ; 374(6575): 1621-1626, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1506414

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission leads to the emergence of variants, including the B.1.617.2 (Delta) variant of concern that is causing a new wave of infections and has become globally dominant. We show that these variants dampen the in vitro potency of vaccine-elicited serum neutralizing antibodies and provide a structural framework for describing their immune evasion. Mutations in the B.1.617.1 (Kappa) and Delta spike glycoproteins abrogate recognition by several monoclonal antibodies via alteration of key antigenic sites, including remodeling of the Delta amino-terminal domain. The angiotensin-converting enzyme 2 binding affinities of the Kappa and Delta receptor binding domains are comparable to the Wuhan-Hu-1 isolate, whereas B.1.617.2+ (Delta+) exhibits markedly reduced affinity.


Subject(s)
COVID-19 Vaccines/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Ad26COVS1/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , BNT162 Vaccine/immunology , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Database (Oxford) ; 20212021 09 29.
Article in English | MEDLINE | ID: covidwho-1443040

ABSTRACT

EpiSurf is a Web application for selecting viral populations of interest and then analyzing how their amino acid changes are distributed along epitopes. Viral sequences are searched within ViruSurf, which stores curated metadata and amino acid changes imported from the most widely used deposition sources for viral databases (GenBank, COVID-19 Genomics UK (COG-UK) and Global initiative on sharing all influenza data (GISAID)). Epitopes are searched within the open source Immune Epitope Database or directly proposed by users by indicating their start and stop positions in the context of a given viral protein. Amino acid changes of selected populations are joined with epitopes of interest; a result table summarizes, for each epitope, statistics about the overlapping amino acid changes and about the sequences carrying such alterations. The results may also be inspected by the VirusViz Web application; epitope regions are highlighted within the given viral protein, and changes can be comparatively inspected. For sequences mutated within the epitope, we also offer a complete view of the distribution of amino acid changes, optionally grouped by the location, collection date or lineage. Thanks to these functionalities, EpiSurf supports the user-friendly testing of epitope conservancy within selected populations of interest, which can be of utmost relevance for designing vaccines, drugs or serological assays. EpiSurf is available at two endpoints. Database URL: http://gmql.eu/episurf/ (for searching GenBank and COG-UK sequences) and http://gmql.eu/episurf_gisaid/ (for GISAID sequences).


Subject(s)
Amino Acid Substitution , Antigens, Viral/chemistry , Epitopes/chemistry , Internet , Metadata , SARS-CoV-2/chemistry , Search Engine , Software , Amino Acids/chemistry , Amino Acids/immunology , Antigens, Viral/immunology , COVID-19/virology , Epitopes/immunology , Humans , SARS-CoV-2/immunology
10.
Science ; 374(6566): 472-478, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1434867

ABSTRACT

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitope Mapping , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/therapy , Humans , Immunodominant Epitopes/chemistry , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
11.
Virus Res ; 305: 198555, 2021 11.
Article in English | MEDLINE | ID: covidwho-1412516

ABSTRACT

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , Propiolactone/pharmacology , SARS-CoV-2/drug effects , Virion/drug effects , Virus Inactivation/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Flocculation/drug effects , Humans , Immune Sera/chemistry , RNA, Viral/chemistry , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Inactivated , Vero Cells , Virion/chemistry , Virion/immunology
12.
Chem Commun (Camb) ; 57(79): 10222-10225, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1408635

ABSTRACT

We developed a one-minute, one-step SARS-CoV-2 antigen assay based on protein-induced fluorescence enhancement of a DNA aptamer. The system showed significant selectivity and sensitivity towards both nucleocapsid protein and SARS-CoV-2 virus lysate, but with marked improvements in speed and manufacturability. We hence propose this platform as a mix-and-read testing strategy for SARS-CoV-2 that can be applied to POC diagnostics in clinical settings, especially in low- and middle-income countries.


Subject(s)
Antigens, Viral/chemistry , Aptamers, Nucleotide/chemistry , COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2 , Biological Assay , Carbocyanines/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Phosphoproteins/chemistry
13.
J Proteome Res ; 19(11): 4398-4406, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-1387124

ABSTRACT

Presentation of antigenic peptides by MHCI is central to cellular immune responses against viral pathogens. While adaptive immune responses versus SARS-CoV-2 can be of critical importance to both recovery and vaccine efficacy, how protein antigens from this pathogen are processed to generate antigenic peptides is largely unknown. Here, we analyzed the proteolytic processing of overlapping precursor peptides spanning the entire sequence of the S1 spike glycoprotein of SARS-CoV-2, by three key enzymes that generate antigenic peptides, aminopeptidases ERAP1, ERAP2, and IRAP. All enzymes generated shorter peptides with sequences suitable for binding onto HLA alleles, but with distinct specificity fingerprints. ERAP1 was the most efficient in generating peptides 8-11 residues long, the optimal length for HLA binding, while IRAP was the least efficient. The combination of ERAP1 with ERAP2 greatly limited the variability of peptide sequences produced. Less than 7% of computationally predicted epitopes were found to be produced experimentally, suggesting that aminopeptidase processing may constitute a significant filter to epitope presentation. These experimentally generated putative epitopes could be prioritized for SARS-CoV-2 immunogenicity studies and vaccine design. We furthermore propose that this in vitro trimming approach could constitute a general filtering method to enhance the prediction robustness for viral antigenic epitopes.


Subject(s)
Aminopeptidases/metabolism , Antigens, Viral , Epitopes , Spike Glycoprotein, Coronavirus , Antigens, Viral/chemistry , Antigens, Viral/metabolism , Chromatography, Liquid , Epitopes/chemistry , Epitopes/metabolism , HEK293 Cells , HLA Antigens/chemistry , HLA Antigens/metabolism , Humans , Peptides/analysis , Peptides/chemistry , Peptides/metabolism , Proteomics/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Tandem Mass Spectrometry
14.
Immunity ; 54(8): 1853-1868.e7, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1330891

ABSTRACT

Antibodies elicited by infection accumulate somatic mutations in germinal centers that can increase affinity for cognate antigens. We analyzed 6 independent groups of clonally related severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) Spike receptor-binding domain (RBD)-specific antibodies from 5 individuals shortly after infection and later in convalescence to determine the impact of maturation over months. In addition to increased affinity and neutralization potency, antibody evolution changed the mutational pathways for the acquisition of viral resistance and restricted neutralization escape options. For some antibodies, maturation imposed a requirement for multiple substitutions to enable escape. For certain antibodies, affinity maturation enabled the neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.


Subject(s)
Antibody Affinity/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Structure-Activity Relationship , Virulence/genetics
15.
Viruses ; 13(5)2021 04 28.
Article in English | MEDLINE | ID: covidwho-1302473

ABSTRACT

One of the most effective strategies for eliminating new and emerging infectious diseases is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope density, and mutation density and (2) analysis of the various aspects of the epitopes, including antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density. After performing a mutation analysis based on the contemporary mutational amino acid substitutions observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates. Despite mutational amino acid substitutions, most epitope sequences were predicted to retain immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline may potentially reduce the time required for effective vaccine development and can be applicable for vaccine development for other pathogenic diseases as well.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Vaccinology/methods , Viral Proteins/genetics , Viral Proteins/immunology
16.
EBioMedicine ; 69: 103465, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1293743

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Subject(s)
COVID-19 Serological Testing/methods , Immunoassay/methods , Mass Spectrometry/methods , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory/methods , Automation, Laboratory/standards , COVID-19 Serological Testing/standards , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay/standards , Machine Learning , Mass Spectrometry/standards , Phosphoproteins/chemistry , Phosphoproteins/immunology , Sensitivity and Specificity
17.
Viruses ; 13(6)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1282632

ABSTRACT

Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.


Subject(s)
Antigens, Viral/immunology , Host-Pathogen Interactions/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adjuvants, Immunologic , Animals , Antigens, Viral/chemistry , Cross Protection/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Models, Molecular , Structure-Activity Relationship
18.
J Chem Theory Comput ; 17(7): 4578-4598, 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1275856

ABSTRACT

The functional adaptability and conformational plasticity of SARS-CoV-2 spike proteins allow for the efficient modulation of complex phenotypic responses to the host receptor and antibodies. In this study, we combined atomistic simulations with mutational and perturbation-based scanning approaches to examine binding mechanisms of the SARS-CoV-2 spike proteins with three different classes of antibodies. The ensemble-based profiling of binding and allosteric propensities of the SARS-CoV-2 spike protein residues showed that these proteins can work as functionally adaptable and allosterically regulated machines. Conformational dynamics analysis revealed that binding-induced modulation of soft modes can elicit the unique protein response to different classes of antibodies. Mutational scanning heatmaps and sensitivity analysis revealed the binding energy hotspots for different classes of antibodies that are consistent with the experimental deep mutagenesis, showing that differences in the binding affinity caused by global circulating variants in spike positions K417, E484, and N501 are relatively moderate and may not fully account for the observed antibody resistance effects. Through functional dynamics analysis and perturbation-response scanning of the SARS-CoV-2 spike protein residues in the unbound form and antibody-bound forms, we examine how antibody binding can modulate allosteric propensities of spike protein residues and determine allosteric hotspots that control signal transmission and global conformational changes. These results show that residues K417, E484, and N501 targeted by circulating mutations correspond to a group of versatile allosteric centers in which small perturbations can modulate collective motions, alter the global allosteric response, and elicit binding resistance. We suggest that the SARS-CoV-2 S protein may exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter the response to antibody binding without compromising the activity of the spike protein.


Subject(s)
Antibodies, Viral/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Binding Sites , Humans , Models, Molecular , Molecular Dynamics Simulation , Mutation/genetics , Protein Conformation , Spike Glycoprotein, Coronavirus/genetics , Stereoisomerism
19.
Science ; 373(6556): 818-823, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1238481

ABSTRACT

Neutralizing antibodies (nAbs) elicited against the receptor binding site (RBS) of the spike protein of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are generally less effective against recent variants of concern. RBS residues Glu484, Lys417, and Asn501 are mutated in variants first described in South Africa (B.1.351) and Brazil (P.1). We analyzed their effects on angiotensin-converting enzyme 2 binding, as well as the effects of two of these mutations (K417N and E484K) on nAbs isolated from COVID-19 patients. Binding and neutralization of the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2), which can both bind the RBS in alternative binding modes, are abrogated by K417N, E484K, or both. These effects can be structurally explained by their extensive interactions with RBS nAbs. However, nAbs to the more conserved, cross-neutralizing CR3022 and S309 sites were largely unaffected. The results have implications for next-generation vaccines and antibody therapies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigenic Variation , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/metabolism , Binding Sites , Binding Sites, Antibody , COVID-19/virology , Epitopes , Humans , Immune Evasion , Mutation , Protein Binding , Protein Domains , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Nucleic Acids Res ; 49(W1): W671-W678, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1233864

ABSTRACT

Vaccination is one of the most significant inventions in medicine. Reverse vaccinology (RV) is a state-of-the-art technique to predict vaccine candidates from pathogen's genome(s). To promote vaccine development, we updated Vaxign2, the first web-based vaccine design program using reverse vaccinology with machine learning. Vaxign2 is a comprehensive web server for rational vaccine design, consisting of predictive and computational workflow components. The predictive part includes the original Vaxign filtering-based method and a new machine learning-based method, Vaxign-ML. The benchmarking results using a validation dataset showed that Vaxign-ML had superior prediction performance compared to other RV tools. Besides the prediction component, Vaxign2 implemented various post-prediction analyses to significantly enhance users' capability to refine the prediction results based on different vaccine design rationales and considerably reduce user time to analyze the Vaxign/Vaxign-ML prediction results. Users provide proteome sequences as input data, select candidates based on Vaxign outputs and Vaxign-ML scores, and perform post-prediction analysis. Vaxign2 also includes precomputed results from approximately 1 million proteins in 398 proteomes of 36 pathogens. As a demonstration, Vaxign2 was used to effectively analyse SARS-CoV-2, the coronavirus causing COVID-19. The comprehensive framework of Vaxign2 can support better and more rational vaccine design. Vaxign2 is publicly accessible at http://www.violinet.org/vaxign2.


Subject(s)
Drug Design , Internet , Machine Learning , Software , Vaccines , Vaccinology/methods , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Proteome , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines/chemistry , Vaccines/immunology , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL